

Proudly Operated by Battelle Since 1965

Tel: (509) 375-7331 Fax: (509) 375-7340 MSIN: P7-03 mark.murphy@pnnl.gov

June 2, 2015

Dr. Oren M. Milstein StemRad, Ltd. 6 Raoul Wallenburg St. 3rd Floor Ramat Hachayal Tel Aviv, 6971905, Israel

Dear StemRad LTD :

SUBJECT: FINAL TEST REPORT FOR STEMRAD'S *360 GAMMA*TM PERSONAL PROTECTION DEVICE – PNWD Project Number 66845

Attached is the final report describing the test protocols and data results involving the testing of the StemRad *360 Gamma*TM *Personal Protection Device* on PNNL's anthropomorphic male phantom with real human skeleton (Alderson RANDO® model), using TLD chips within phantom cavities to measure the internal dose from a Cs-137 source both with and without the *360 Gamma*TM device on phantom.

Please contact us for any questions on this report. It was a pleasure working with your staff and being able to assist your company with product characterization. We hope you consider us for assistance with any future testing.

Sincerely,

Mark K. Murphy Sr. Research Scientist Radiation Measurements & Irradiations

<MKM/MKM/mkm>

Enclosure/Attachment

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor Battelle Memorial Institute, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or Battelle Memorial Institute. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

> PACIFIC NORTHWEST NATIONAL LABORATORY operated by BATTELLE for the UNITED STATES DEPARTMENT OF ENERGY under Contract DE-AC05-76RL01830

This document was printed on recycled paper. (9/2003)

Report Date	June 2, 2015
Project Title	Testing of the StemRad [®] 360 Gamma TM Personal Protection
	Device
PNNL Project Manager	Mark K. Murphy, Radiation Measurements & Irradiations
	Group
PNNL Project/Proposal Number	66845
Customer:	StemRad LTD
Customer Point of Contact	Dr. Oren M. Milstein – StemRad LTD
	<u>oren@stemrad.com</u>
	U.S. Office:
	228 Hamilton Ave. Palo Alto, CA 94301
	650-388-9112 (Tel) 650-388-9120 (Fax)

Test Report - StemRad[®] 360 Gamma[™] Radiation Shielding Device

BACKGROUND

StemRad LTD is a private company based in Tel Aviv, Israel, with offices in Palo Alto, CA. StemRad LTD developed a product called the StemRad® 360 Gamma[™], which is a "personal protection device" that is worn like a belt, and that wraps around the hips in order to shield the bones that contain a significant percentage of the body's bone marrow. The objective is to conserve enough viable bone marrow from an otherwise deadly radiation dose to allow regeneration of bone marrow and survival of the individual.

StemRad LTD staff Dr. Oren M. Milstein (CSO) and Daniel Levitt (CEO), and their U.S. consultant Dr. Kenneth Kase, visited staff from the Radiation Measurements & Irradiations Group at Pacific Northwest National Laboratory (PNNL) on May 9, 2014, to see the irradiation and dosimetry processing labs and to discuss details of the desired TLD measurements within phantom wearing the StemRad[®] 360 GammaTM device. Discussions during that visit, and numerous email communications afterwards, resulted in the final protocols used.

CUSTOMER REQUIREMENTS AND EXPECTATIONS

StemRad's desire was for PNNL to perform irradiations of the RANDO® male phantom that would result in an approximate simulation of a radiation exposure of an individual to a "cloud" of Cesium-137 (Cs-137) radioactivity, while still being consistent with the irradiation geometry of previous phantom irradiations conducted by StemRad in Israel. This source-phantom irradiation geometry could also simulate the radiation dose to an individual walking and turning numerous times in an enclosed environment that contains multiple sources at various heights relative to the individual. After discussions between StemRad and PNNL staff, StemRad selected the source-phantom geometry options listed in **Table 1**.

Table 1. RANDO[®] and Cs-137 Source Irradiation Geometry Selected By StemRad for Subject Testing

RANDO Height * Off Floor	Source Movement [#]	Number of Source Positions and Angles	Dwell Times at Each Angle	Dose to RANDO Reference Point* at Each Source Position	RANDO- Source Distance at 0° [†]
170 cm	Vertical in straight line	-45°, -22.5°, 0°, +22.5°, +45 °	Equal	Varying (due to varying source distance)	130 cm

* Measured relative to the reference point, located on the top surface of slice 29.

[#] The maximum source height possible with existing equipment is 304 cm.

⁺ This distance, combined with RANDO[®] height and straight line source movement, results in lowest position of source being ~40 cm off floor (and thus ~4.5% floor scatter at that position) and highest position being 300 cm off floor.

StemRad also desired that the irradiations be done with TLDs located in tissue and bone within the hip and abdominal areas, including within bone marrow in the hip bones and vertebrae and within the GI tract. Of course, irradiations would be performed for the two cases of StemRad[®] 360 Gamma[™] device ON and OFF.

PROJECT OBJECTIVES

The project objective is to provide data that shows the effectiveness (decrease in dose to hip and abdominal area) of the StemRad[®] 360 Gamma[™] device for the approximate simulation of a "cloud" of Cs-137 radioactivity.

TEST EQUIPMENT

The equipment utilized during this project are listed in **Table 2.** PNNL's male RANDO[®] phantom, manufactured by Alderson Corp., was used for the irradiations. The RANDO[®] man represents a 175 cm (5'9") tall and 73.5 kg (162 lb.) male figure. It does not have arms or legs. The phantom is constructed with a real human skeleton which is cast inside soft tissue-simulating material. Lungs are molded to fit the contours of the natural rib cage. The air space of the head, neck and stem bronchi are duplicated. The phantom is sliced at 2.54-cm intervals to allow access to various parts and, in particular, to the cavities for radiation detectors. Each slice contains approximately 40 of these cavities, each 4.8 mm diameter in a 3.5 cm grid pattern.

The Cs-137 source used has a current activity of 4.85 Ci, and is contained within three layers of encapsulation consisting of a total of 0.078" stainless steel and 0.125" aluminum. This

Equipment Model	Serial Number	Use	Calib Expiration Date
StemRad [®] 360 Gamma [™] belt,	SR360019	Allow measurement of	N/A
Small-Tall size		effectiveness of belt in Cs-137 field	
Alderson RANDO®		Allow measurement of	
anthropomorphic phantom, with	N/A	effectiveness of belt in reducing	N/A
real skeleton		radiation dose rate to specific	
		regions of a human	
4.85 Ci Cs-137 Source, triple	318-030	Irradiations of RANDO [®] phantom	02/2016
encapsulation	510 050	with and without belt	02/2010
Capintec Model PR-18 ionization	5889	Both calibration and real-time	04/2016
chamber	5007	monitoring of radiation field	01/2010
Keithley Model 617 electrometer	383823	Collect signal from ionization	06/2015
	505025	chamber	00/2015
Temperature probe	TNFL1-	Temperature and pressure values	02/2016
	0001	allow corrections to ionization	02/2010
Barometric pressure	PEEW1-	signal due to air density	02/2016
	0001		02/2010
	SWCC1-	Provide accurate durations of	
Timer	0001	radiation exposure for each	02/2016
	0001	position and total duration.	
Harshaw TLD-700 Lithium-		Placed within RANDO® cavities,	
fluoride Thermoluminescent	StemRad	allows measurement of total	Calib
Dosimeters (TLD) chips(0.32mm	set	integrated radiation dose	4/2015
x 0.32 mm x 0.9 mm)			
Harshaw Model 5500 TLD	WD33607	Allows automated readout and	N / A
Reader	WD33097	analysis of TLDs	N/A
Automated turntable at 1 rpm,		Allows continuous rotation of	
attached to the top of aluminum	N/A	RANDO phantom	N/A
frame on a hydraulic cart			

Table 2. Equipment Utilized for StemRad[®] 360 Gamma[™] Belt Irradiations on Phantom

results in the elimination of the beta particle part of the spectrum associated with the unencapsulated nuclide, and only the gamma spectrum is seen (peaks at 662 keV).

PREPARATION FOR TESTING

Even though the RANDO® phantom already contained approximately 40 cavities in each slice, StemRad desired dose information at additional locations, especially in bone. In order to determine the exact locations for these additional cavities, StemRad used ImageJ software

PNNL_Testing_of_StemRad_Belt.docx, Rev0, June 2015

to construct 3D models of the red bone marrow within the RANDO® phantom. The 2D images of each slice face (provided by PNNL) were loaded into the segmentation editor of Image] as image stacks and the red bone marrow regions were highlighted as regions of interest and interpolated to form 3D volumes of the red bone marrow within the RANDO® slices. Because of the relative spatial uniformity of the spinal column, the vertebral volumes were assigned one TLD cavity only for each slice (totaling 7 cavities). The remaining 33 cavity locations were then identified by calculating the center of masses of 33 equal volumes of the pelvic red bone marrow within these slices. This StemRad-developed method allows StemRad to match absorbed doses in these cavities to specific masses of red bone marrow within the lower spine and pelvis. At StemRad's direction, PNNL drilled 40 additional cavities at the identified locations, in 11 of the slices that involved the hip and abdominal area (slices 22-32). Two images of each of these 11 slices are provided in Appendix A: one image with StemRad's labeled locations for desired TLD locations, and another image showing PNNL's labeled cavities into which TLDs were inserted for the RANDO® irradiations - for a total of 22 images. StemRad determined that the 40 TLD cavity locations which required drilling into bone are representative of red bone marrow tissue and the other 52 TLD cavity locations are representative of other tissues in the abdominal region. Refer to **Appendix C** to discern the tissue associated with each measurement location.

Another modification to the RANDO[®] phantom was to mill down "high spots" at the interfaces of about six of the phantom slices. This was needed in order to make the assembled phantom much more stable, and ensure that the slices in the spinning phantom would not shift during the 8-10 hour irradiation.

In order to provide secure attachment of RANDO® to the turntable, and still maintain natural thigh shape, mass, and radiation scatter; thigh extensions were fabricated from tissue-equivalent polymer and were attached to the turntable, and allowed attachment to RANDO® thighs using polymer dowels. The turntable was secured to the very edge of a hydraulic cart that could raise RANDO® from approximately 60 cm to 200 cm in height.

Because source-to-RANDO and floor-to-RANDO distances were important, as were the irradiation angles, it was required to have a RANDO reference point. StemRad selected a point near the middle of the RANDO® torso, located on the top surface of slice #29 and at the geometric center of that slice, which is at the point of an existing TLD cavity (see slice #29 image in Appendix A). To ensure that the z-axis of RANDO® rotated exactly relative to this selected reference point on slice #29, first the polymer thigh extensions were placed on a level surface, then RANDO® slices were stacked on top of the polymer thigh extensions until slice #29 was complete (and using carpenter's level, ensuring slice surfaces stayed level). A carpenter's plumb-bob – suspended from above – was lowered to slice #29 and centered on the reference point. Then the top slice was removed, the plumb-bob lowered and rotation axis location on this next slice labeled, and this repeated until axis of rotation on slices 29-34 and the polymer thigh extension were all labeled. This marked axis of

rotation on the polymer thigh extension allowed it to be aligned on turntable exactly as desired to allow RANDO® to rotate relative to the slice #29 reference point. When RANDO was stacked all the way to his neck, the plumb-bob was again used to mark the point of rotation on the top of each slice (slices 10-30), and it was observed that this axis of rotation consistently stayed aligned with the same central cavity/plug on each slice.

In order to provide a secure anchor at the top of the spinning RANDO®, a ¾-inch piece of plywood with a 7/8-inch hole in the center was screwed to the top of RANDO® (the slice representing the base of the neck), and a 7/8-inch wood dowel (secured by an overhead arm) was inserted into the hole. The overhead arm is constructed of hollow, thin-walled aluminum frame, which resulted in less than 0.4% scatter of radiation field in direction of RANDO® (this was measured by placing the aluminum frame next to a Model RO-20 radiation survey meter in the Well Room Cs-137 field).

In order to allow movement of the Cs-137 source vertically during RANDO® irradiations, a thin-walled PVC pipe (cut in half to form a half-pipe) was used to hold the source, and this source holder was raised to a maximum height of 300 cm by being attached to a Genie Lift. The Genie Lift is a strong, low mass fork lift that was manually operated from 300 cm using a long rod (allowing operator to stay outside high radiation fields).

The "fit" or exact positioning of the 360 Gamma[™] belt on the RANDO[®] phantom to StemRad's desired specifications was accomplished by PNNL staff placing the belt on RANDO[®], taking digital photos from numerous angles, emailing the photos to StemRad staff, and adjusting the belt based on feedback from StemRad. This process took over a week's time because the medium-sized belt was found to be slightly too large for RANDO[®], and so StemRad shipped their small-sized belt. Based on the photos provided to StemRad (see **Figure 1**), the small-sized belt provided an acceptable fit according to StemRad. This acceptable fit was defined as the back of the belt spanning between slice 24.5 and slice 33.5, and the front of the belt spanning between slice 25.3 and slice 32.3, which resulted in the midpoint of belt span on both front and back being well within 0.5 cm of the desired reference point of slice 29.0 (top of slice 29).

The RANDO[®] cavities the TLDs would occupy were cleaned with alcohol to ensure no luminescent debris would get on TLD chips, then these cavities were labeled with marked masking tape to ensure accurate TLD placement and documentation.

Figure 1. Photos of small-sized belt on RANDO® phantom. These photos allowed StemRad staff to verify that the fit met with their specifications.

TEST PROTOCOL USED

The TLD and phantom preparation, source-phantom geometry, and irradiation protocol was as follows:

- TLD-700 LiF TLDs were used, and analyzed with a Harshaw Model 5500 reader. Before each use/irradiation, the TLDs were reader annealed using a linear time-temperature profile (TTP) with a heating rate of 10°C/s, starting at 50°C and reaching a maximum temperature of 300°C, for a total heating time of 43 seconds. The reader anneal was followed by a low temperature oven anneal at 80°C for 24 hours to reduce the abundance of short half-life traps in the TLD crystal and thus reduce fading of signal.
- Within two days prior to RANDO® irradiations, at one slice at a time the TLDs were loaded into desired RANDO® cavities (3 TLDs per cavity) at the center height within the phantom slice, and the resulting voids at the top and bottom of the cavities were filled with unit density plugs. The total number of test cavities involved was 92, resulting in 276 TLD test chips, which did not count the TLD chips used for controls and calibration set. TLD location is documented as to slice#, cavity#, wheel#, and wheel position# (there were 7 separate wheels or circular cartridges used for automated readout of TLDs, with 50 slots in each wheel to accommodate 50 TLD chips).
- An additional cavity at shoulder level of RANDO® (slice 13) was loaded with TLDs for both irradiations. This was in order to allow comparison of total integrated dose for belt ON and belt OFF scenarios and make any corrections if necessary. The cavity used was only approximately 1 cm depth in tissue, and mid-way between shoulders, and would not be impacted by presence or absence of StemRad belt.
- In addition, 50 reader calibration chips, 12 QC chips, 12 blank chips and 40 spares were used to support the measurement process.
- The phantom slices were then stacked on top of turntable to complete the phantom assembly, and well secured with long strips of industrial adhesive tape. Then top anchor was put in place.
- The RANDO[®]/Turntable/Cart assembly was then rolled into the Low Scatter Facility and placed at desired location near center of the room. The room is approximately 8 x 9 x 10 meters in size.
- The Monitoring Chamber was then centered at RANDO® reference height (top of slice 29) and at 14.5 cm from RANDO® surface (right side of RANDO®) and secured. This chamber would provide gamma field intensity monitoring in real-time, and allow immediate verification at each of the 5 source positions that source radiation field was at correct intensity relative to RANDO®. This would provide backup data for the passive monitoring (TLDs in cavity in slice 13). It should be noted here that the measured tissue dose from chips in slice 13 is not expected to match the tissue dose inferred from the air kerma measured by the monitoring chamber due to the shielding provided by the phantom during rotation.
- RANDO/cart was then raised until top of slice 29 was at predetermined irradiation height of 170 cm.

- Source holder (without source) was raised to each of the 5 positions, and both source height and RANDO-Source distances were measured and verified (See **Table 3** for resulting angles and distances).
- Video monitoring was then turned on, as well as turntable at 1 rpm.
- The source holder was set at the first irradiation position (-45 degrees = 40 cm height) and, using a 180 cm handling tool, the source was quickly transferred from its storage container to the source holder. The stopwatch was started when source was within the PVC holder, and the PVC lid flipped into position. Photos in Figures 2a and 2b provide view of actual setup just prior to irradiation #2.
- After the preselected irradiation duration had elapsed (1 hour 36 minutes), using a 3.5 meter rod outside the high radiation area, the Cs-137 source is quickly cranked vertically to the next highest position. This movement is accomplished within about 15-20 seconds.
- After each predetermined irradiation duration (1 hour 36 minutes) the source is moved to next irradiation position for a total of 5 positions listed in **Table 3**.
- As the irradiation is completed at the last source position (highest position, + 45 degrees and 300 cm height), the source is quickly lowered to the lowest position (~25 seconds) and then transferred back to its shielded storage container away from RANDO® (~ 10 seconds).
- The phantom/cart is then lowered and rolled back to the dosimetry lab.
- At some time prior to TLD analysis, RANDO[®] is dismantled one slice at a time and TLDs removed from its cavities. The TLDs are placed into "wheels" (Trays used in automated reader), and TLD location is documented as to slice#, cavity#, wheel #, and wheel position#.
- At the predetermined TLD post irradiation fade time (~ 2-4 days), the loaded TLD reader wheels were placed in the TLD Reader for readout and analysis.
- Reader Calibration was accomplished by reading chips exposed under CPE conditions behind 6.9 mm of PMMA plastic in a chip irradiation jig mounted on a 30 cm x 30 cm x 15 cm PMMA phantom. The chips were exposed with their front face located at a distance of 3 meters from the source, using a J.L Shepherd Cs-137 beam irradiator to achieve a delivered air kerma corresponding to D(10) = 10 mGy, based on $C_{K} = 1.21$ (ANSI/HPS N13.11-2009). The calibration chips were annealed, exposed and read at the same time as the test chips exposed in phantom.
- The entire process was repeated for the second RANDO[®] irradiation.
- The TLD results were then populated into a spreadsheet and resulting dose levels calculated. The data results included providing the ratio of the mean dose from each RANDO® cavity for both belt ON/OFF scenarios in order to provide a measure of belt effectiveness to Cs-137 field.

Table 3. Angles, distances and exposure rates associated with RANDO and Cs-137source.

Source Position	Source Height Off Floor (cm)	Source-Slice 29 Reference Distance (cm)	Source-RANDO Z-axis Distance (cm)	mR/h in AIR (slice 29)	mR in 1.6 hrs in AIR (slice 29)
+45°	300	184	130	379	606
+22.5°	224	141	130	645	1032
0°	170	130	130	759	1214
-22.5°	116	141	130	645	1032
-45°	40 (~4.5% scatter)	184	130	396	634
* Air-Kerma	, Gy, is obtained by	multiplying Exposur	re, R, by 8.78E-3	Total Expo *Total Air-K	osure: 4.518 R erma: 3.967 cGy

Figure 2a. Photo of wide view of actual setup just prior to irradiation Run #2, with RANDO (belt ON) on left, and white PVC source holder on bottom right.

Figure 2b. Photos of actual setup just prior to irradiation Run #2, showing sample Cs-137 source (polished aluminum) in its white PVC holder, RANDO rotating with belt ON, and monitoring chamber.

DATA RESULTS

A copy of the irradiation datasheet, showing the verified angles, distances, irradiation durations, and monitoring chamber signal is provided in **Appendix B**. For any given run, the real-time monitoring chamber data indicated that the signals for the paired angles (±22.5 ° and ±45 °) were within 1.5% of each other when the known ~4.5 % scatter at -45 ° position is accounted for. Comparing the monitoring chamber signals for run#1 and run#2 shows the dose rates for the two runs were within 1.5% of each other. This is consistent with the TLD results from slice 13, which indicate the total doses for run#1 and run#2 were within about 1%. This agreement, along with verifying the distances before each run, provides assurance that for run#1 and run#2 RANDO® experienced the same irradiation angles, distances, dose rates, and total delivered dose.

Appendix C contains the spreadsheet that includes the average measured absorbed dose in tissue for each TLD cavity, for both Belt Off and Belt On conditions. Also included are the ratios of absorbed dose for Belt On and Belt Off conditions for these tissue types, as well as the associated standard deviations of the data. **Table 4** summarizes these measured absorbed dose values for the various tissue types. **Table 5** summarizes the Belt On/Belt Off dose ratio for each of the regions or tissue types.

The symmetry in the X-Y plane for doses measured within RANDO® without the shielding belt, as indicated by the values in the spreadsheet in **Appendix C**, is due to a combination of

Table 4.	Summary of measured absorbed dose in tissue by body region or tissue
type, for	both Belt OFF and Belt ON conditions.

Body Region/Tissue Type	Absorbed Dose	e – Belt OFF	Absorbed Dos	e – Belt ON
	Mean *	%SDEV †	Mean *	%SDEV [#]
Bone Marrow - Hip	2797 mrad	3.0	1637 mrad	15.4
Bone Marrow - Vert	2770 mrad	3.8	1922 mrad	17.7
Bone Marrow – Hip & Vert	2792 mrad	3.2	1687 mrad	17.0
GI Tract	2818 mrad	3.2	2081 mrad	10.4
Ovaries**	2693 mrad	0.5	1765 mrad	0.1
Combined	2.80 rad	3.2	1.90 rad	16.5
	(2.80 cGy)		(1.90 cGy)	

* Dose values are the integrated absorbed dose relative to tissue.

[†] In addition to the high accuracy and precision of the TLDs, these tight standard deviations are due to a combination of symmetric source-RANDO geometry, the fact RANDO was irradiated from all sides, the relatively large distance of the source approximated a point-source geometry and minimal variation in "in-air" dose rate across RANDO volume, and the penetrating ability of Cs-137 gamma spectrum in tissue.

The reason these standard deviations are as good as they are, is due to the same combination of reasons above; but deviation is greater because the fact that not all the TLD locations were shielded fully by the shielding belt for the entire exposure.

** These would be the approximate ovary locations if this RANDO was female based on anatomical markers.

Body Region /			Belt ON/E	Belt OFF
Ticque Type	Min	Max	Dose R	atio
Tissue Type	Ratio	Ratio	Mean	%SDEV
Bone Marrow - Hip	0.42	0.76	0.59	17.0
Bone Marrow - Vert	0.49	0.87	0.70	19.4
Bone Marrow – Hip & Vert	0.42	0.87	0.61	18.6
GI Tract	0.62	0.87	0.74	9.8
Ovaries	0.652	0.659	0.656	0.7
Combined	0.42	0.87	0.68	16.5

Table 5. Summary of the Belt ON/Belt OFF dose ratiofor each of the regions or tissue types.

the following:

- The symmetry of the physical RANDO[®] (tissue and bone) in the X-Y dimension.
- The symmetry of the effective density of RANDO in the X-Y dimension.
- The symmetry in the X-Y dimension of the cavities containing TLDs.
- The source distance, and thus dose rate, being equal for each pair of same-symmetry TLD cavities.
- RANDO[®] completing numerous rotations at a constant speed during exposure.
- The fact that the axis of rotation for RANDO[®] was very near the geometric center of each slice, especially the slices containing TLDs.

Measurements of the Cs-137 radiation field at 170 cm height and distances of 120 cm and 130 cm were also performed without RANDO[®] in place in order to provide the *exposure* rate and *air-kerma* rate "free-in-air". The measured *exposure* rates of 759 mR/h (0.666 cGy/h Air-kerma rate) at the 130 cm reference distance, and the 889 mR/h (0.781 cGy/h Air-kerma rate) at 120 cm indicates, as expected, that the field follows 1/d². This will allow in-air dose rates to be calculated for any location in free space, so any location where RANDO[®] volume could reside. This would be useful to compare in-air dose rate versus tissue or bone dose rate (and therefore total integrated dose) at any point for a stationary RANDO[®] phantom.

MEASUREMENT UNCERTAINTIES

The radiation measurement uncertainties that PNNL's Radiation Measurements & Irradiations group calculate for their operations, using *GUM Workbench* software, are consistent with NIST Technical Note 1297 (1994), as well as a document produced by Working Group 1 of the Joint Committee for Guides in Metrology in 2008 titled "Evaluation of Measurement Data - Guide to the Expression of Uncertainty in Measurement". The measurement uncertainty values that were expected to be of most interest to StemRad were those that involved the MEASURED AIR-KERMA RATE (and integrated AIR-KERMA) at the location where RANDO would be placed, the resulting MEASURED ABSORBED DOSE to RANDO TISSUES, and the BELT ON/BELT OFF MEASURED DOSE RATIOS for these same

PNNL_Testing_of_StemRad_Belt.docx, Rev0, June 2015

tissue regions.

Uncertainty in the Measured Air-Kerma: Because StemRad may desire to use the testing results to create factors that convert from a known *Exposure rate* (R/time) or *Air-Kerma* rate (Gy/time) of a field, to the dose within RANDO (wearing the StemRad belt) placed in such a field *(for example, Absorbed Dose* in specified organs or *Effective Dose Equivalent)*, the measurement uncertainties associated with these Exposure and Air-Kerma parameters (See Table 3) would be helpful. The *expanded uncertainty* associated with these Exposure and Air-Kerma values were calculated to be $\pm 1.15\%$ at the 67% confidence level (k = 1), and $\pm 2.3\%$ at the 95% confidence level (k=2).

Uncertainty in TLD Measured Dose: As can be expected, the main uncertainty components involve the precision of the readout values of the TLD chips. Given that the TLD system was calibrated prior to RANDO[®] irradiation using one of PNNL's calibrated Cs-137 fields, the uncertainties in the resulting Gy and Gy/hr values measured within RANDO[®] are not influenced by the source-RANDO geometry (distances and angles). As can be seen on the spreadsheet in **Appendix C**, which details the TLD measurement results for the various regions or tissue types, for the Belt Off irradiation the standard deviation of the measured absorbed dose varied between 0.5% and 3.8%, with the standard deviation for all tissues combined being 3.2% (See Table 4). Propagating all uncertainties, the total *expanded uncertainty* for the quoted ABSORBED DOSES within the RANDO[®] cavities at the specified locations with Belt Off was calculated to be $\pm 2.4\%$ at the 67% confidence level (k = 1), and $\pm 4.8\%$ at the 95% confidence level (k = 2).

For the Belt On irradiation, the standard deviation in the measured absorbed dose varied between 0.1% and 17.7%, with the standard deviation for all tissues combined being 16.5% (See Table 4). Propagating all uncertainties , the total *expanded uncertainty* for the quoted ABSORBED DOSES within the RANDO[®] cavities at the specified locations with Belt On was calculated to be \pm 3.1% at the 67% confidence level (k = 1), and \pm 6.2% at the 95% confidence level (k = 2).

For the Belt On/Belt Off dose ratios, the standard deviation varied between 0.7% and 19.4%, with the standard deviation for all tissues combined being 16.5% (See Table 5). Propagating all uncertainties, the total *expanded uncertainty* for the Belt On/Belt Off dose ratios for cavities at the specified locations was calculated to be \pm 4.0% at the 67% confidence level (k = 1), and \pm 7.9% at the 95% confidence level (k = 2).

The details in the various components of uncertainty and how they were propagated to arrive at the expanded uncertainty values above are provided in **Appendix D**. In addition to using the TLD chip readout accuracy and precision values described above (the main contribution to error), the overall expanded uncertainty takes into account other variables such as the physical measurement of the source-RANDO distances at the various angles, estimated Cs-137 source anisotropy, and the results of the quality control dosimetry in phantom slice 13.

The individual raw TLD readout values will be provided separately from this report, as well as additional photos and video of spinning phantom in irradiation setup.

Report written by: Mark K. Murphy, Sr./Research Scientist

6/3/2015 Date

Report reviewed by:

Bruce Rathbone, Sr. Research Scientist

6/3/2015

Date

APPENDIX A - StemRad's provided photos (left) showing their desired X-Y coordinates for TLD cavities, and PNNL's provided photos (right) showing resulting TLD cavities. RANDO[®] phantom slices 22-32.

PNNL_Testing_of_StemRad_Belt.docx, Rev0, June 2015

PNNL_Testing_of_StemRad_Belt.docx, Rev0, June 2015

•

28-13

-1H

28-15

																						aten
	7.0 " = 119.4 cm	ANDO Surface Dist at 0°		8/RANDO Dist = 5.75 "	Source.	t=0	t=1h36m v	t=3h 12m V	t=44 48m 1	t=6424m v	t=8h 0m voff	· O ^{··} こ 119. イレー ANDO Surface Dist at 0°		8/RANDO Dist = 5.75 "	Sour Comments	Move t= 0/	t=1h36m /	t= 3h 12 m /	t= 4hygmr	t=6424m	t= 8 h 0 m roff	ssec before source t
StemRad Shielding Belt Testing Using RANDO Phantom and TLDs	Run #1: 4-1-2015 M. Murphy 4-2-2015 MK Murphy 47.	TLD Load Date TLDs Loaded By Irradiation Date Irradiation Performed By Source/RAN	7LD Unload Date TLDS Unloaded By TLD Readout Date TLD Readout By	3elt ON OFB? ERANDO spinning at 1 rpm ERANDO Slice 29T at 170 cm off floor EPR-18/F	e Source Source* Irrad Irrad Source Temp Di Angle Distance /RANDO Start Duration Transit & Monitoring Chamber Readings Off Floor Distance Time Press (PA)	-45° 40 cm/ 184 cm/ 46:55A 14 36m 45 Sec 22:16 -59.5 -59.5 -59.6 -59.5	-22.5° 116 cm / 141 cm 48:31 A 143 6m ~ 20 Sec 23:0 -92.5 -92.6 -92.4 -92.6	0.0° [70 cm 130 cm -10:07 1436m -20c 22:2 -104.6 -104.9 -104.4 -104.5 +	+22.5° 224 cm/141 cm/~11;43 1436m ~200 22.3 -90.7-90.5-90.6-91.0	+45° 300 cm 184 cm ~1:21 1436m ~25c 21.6 -57.0 -56.7 -56.7 +	sured relative to reference point at top of slice #29	Run #2: <u>4-14-2015</u> J. Pickkanen <u>4-17-2015</u> J. Picklanen <u>47.0</u> TLD Load Date TLDs Loaded By Irradiation Date Irradiation Performed By Source/RANI	4-20-2015 PM J. Pirkkunen Kal-2015 @0830 AL Maine TLD Unload Date TLD Readout By TLD Readout Date TLD Readout By	belt ON OFF? MANDO spinning at 1 rpm EKANDO Slice 29T at 170 cm off floor EPR-18/R	e Source Source* Irrad Irrad Source Temp Distance /RANDO Start Duration Transit & Monitoring Chamber Readings	-45° 40 cm × 184 cm × 138 k 1436 × 5500 21.752 -58.9 -58.2 - 58.6	-22.5° [16 cm / 141 cm / -9:14 [4 36m ~20 sec 21:45 -90.9 -91.3 -91.3 -91.1 t	0:0° [170 cm / 130 cm / -10:500 [1 36m -20 20 = 30, 201 - 103, 1 - 103, 1 - 103, 5 + 103, 7	+22.5° 224 cm / 141 cm ~ "12:27P [4 36 ~ 15;ee 21:9 - 89.7 - 89.9 - 90.04 - 90.2 4	+45° 300 cm/184 cm / 2:028 14 3 6m ~ 15300 23.9 -55.9 -56.0 -55.8 - 56.0 -56.1 +	sured relative to reference point at top of slice #29 $15 $ sec end - 55.7 - 55.9 - 56.0 - 55.8 $+$	Mite on back page wist
				_	Sourc Positio	1	2	ŝ	4	ъ	* Meä	-		5	Sourc Positic	1	2	3	4	5	* Mea	

Appendix B – StemRad Irradiation Data Sheet Copy

Page **21** of **30**

Appendix C TLD Data Results for TLDs Contained Within RANDO Phantom - StemRad Belt

Measu	urement				Belt Off				Belt On				Belt On / Belt	Off
Loc	ation													
Phantom	Slice	1 64-1785		Absorbed	Relative	Relative		Absorbed	Relative	Relative			Relative	Relative
Clico	Couitu	Tissue		Deeg	Ctondord	Expanded		Ausorbeu	Ctenderd	Expanded		Detia	Chandrad	Expanded
Silce	Cavity	Type		Dose	Standard	Uncertainty		Dose	Standard	Uncertainty		Ratio	Standard	Uncertainty
Number	Number			(mrad)	Uncertainty	k=2		(mrad)	Uncertainty	k=2			Uncertainty	k=2
28	2	BM (h)		2946	0 0121	0.0242		1442	0.0080	0.0159		0 4 9 0	0.0145	0.0290
28	3	BM (b)	-	2986	0.0189	0.0379		1333	0.0188	0.0376		0.447	0.0267	0.0534
20	4	DM (h)	10000	2722	0.0078	0.00156	0 3	1476	0.0100	0.0070		0.447	0.0207	0.0004
20		DIVI (II)		2015	0.0070	0.0100		1000	0.0340	0.0000		0.042	0.0349	0.0090
20	5	DIVI (II)		2915	0.0146	0.0296	-	1230	0.0105	0.0210		0.424	0.0181	0.0363
28	0	BIVI (n)	-	2869	0.0107	0.0214		1360	0.0085	0.0170		0.474	0.0136	0.0273
28	7	BM (h)		2909	0.0201	0.0402		1489	0.0085	0.0170		0.512	0.0218	0.0436
29	1	BM (h)		2915	0.0157	0.0314	de service de	1557	0.0149	0.0298		0.534	0.0216	0.0433
29	2	BM (h)		2801	0.0083	0.0167		1487	0.0104	0.0209		0.531	0.0134	0.0267
29	3	BM (h)		2853	0.0087	0.0174		1370	0.0117	0.0234		0.480	0.0146	0.0292
29	4	BM (h)		2757	0.0080	0.0160		1401	0.0106	0.0212		0.508	0.0133	0.0266
29	5	BM (h)		2737	0.0086	0.0173		1417	0.0077	0.0154		0.518	0.0116	0.0232
29	6	BM (h)		2767	0.0120	0.0241		1356	0.0174	0.0348		0.490	0.0212	0.0423
29	7	BM (h)		2910	0.0104	0.0208		1363	0.0081	0.0162		0.468	0.0132	0.0263
29	8	BM (h)		2801	0.0137	0.0274		1470	0.0099	0.0198		0.525	0.0169	0.0338
20	0	BM (h)		2793	0.0082	0.0165	*	1507	0.0084	0.0168		0.540	0.0118	0.0000
20	3	Divi (II)	*	2755	0.0002	0.0100	*	1607	0.0004	0.0100		0.540	0.0110	0.0230
30	0	BM (h)		2700	0.0115	0.0229		1037	0.0000	0.0172		0.591	0.0143	0.0207
30	2	DIVI (II)		2/00	0.0064	0.0169		10/0	0.0109	0.0217		0.008	0.0138	0.0275
30	3	BIVI (n)	-	2852	0.0141	0.0282		1427	0.0152	0.0304		0.500	0.0208	0.0415
30	4	BM (h)	*	2694	0.0132	0.0264	*	1548	0.0170	0.0339		0.575	0.0215	0.0430
30	5	BM (h)		2770	0.0104	0.0207		1695	0.0077	0.0154		0.612	0.0129	0.0258
31	1	BM (h)	*	2777	0.0083	0.0166	*	1834	0.0158	0.0317	in the second second	0.660	0.0179	0.0358
31	2	BM (h)		2736	0.0089	0.0177		1745	0.0103	0.0205		0.638	0.0136	0.0271
31	3	BM (h)	1	2818	0.0102	0.0204		1806	0.0106	0.0212		0.641	0.0147	0.0294
31	4	BM (h)	*	2723	0.0082	0.0164	*	1740	0.0092	0.0185		0.639	0.0124	0.0247
31	5	BM (h)		2773	0.0103	0.0206		1837	0.0116	0.0233		0.663	0.0155	0.0311
32	1	BM (h)		2914	0.0093	0 0185		2126	0.0083	0.0165		0 730	0.0124	0.0248
32	2	BM (h)		2755	0.0100	0.0201		1998	0.0150	0.0300		0.725	0.0181	0.0361
32	2	BM (b)		2716	0.0162	0.0201		1000	0.0104	0.0000		0.720	0.0107	0.0295
32	3	Divi (II)		2710	0.0102	0.0324		2042	0.0104	0.0206		0.700	0.0192	0.0365
32	4	DIVI (II)		2/04	0.0001	0.0162		2043	0.0103	0.0206		0.755	0.0131	0.0262
32	5	Bivi (n)		2637	0.0094	0.0187	· · · · · ·	1863	0.0098	0.0196		0.706	0.0136	0.0271
32	6	BM (h)	-	2682	0.0082	0.0164		1960	0.0094	0.0188		0.731	0.0125	0.0250
32	7	BM (h)		2727	0.0089	0.0179		1978	0.0169	0.0338		0.725	0.0191	0.0382
32	8	BM (h)		2791	0.0090	0.0180		2034	0.0105	0.0210		0.729	0.0138	0.0277
	BM (h)		min	2637	0.0078	0.0156	min	1236	0.0077	0.0154	min	0.42	0.0116	0.0232
	BM (h)		max	2986	0.0201	0.0402	max	2126	0.0340	0.0680	max	0.76	0.0349	0.0698
	BM (h)	av	erage	2797	0.0109	0.0219	average	1637	0.0120	0.0239	average	0.59	0.0166	0.0331
	BM (h)		stdev	85	0.0032	0.0065	stdev	253	0.0051	0.0102	stdev	0.10	0.0050	0.0099
	BM (h)	%	stdev	3.0	a - 12		%stdev	15.4			%stdev	17.0		
22	1	BM (v)		2722	0.0091	0.0182		2380	0.0083	0.0166		0.874	0.0123	0.0247
23	1	BM (v)	10.000	2732	0.0079	0.0158		2197	0.0088	0.0177		0.804	0.0118	0.0237
24	1	BM (v)		2722	0.0141	0.0282		2145	0.0144	0.0289		0.788	0.0202	0.0404
25	1	BM (v)		2704	0.0185	0.0270		10/6	0.0196	0.0203		0.000	0.0270	0.0540
25	1	DIVI (V)		2734	0.0105	0.0370	*	1340	0.0190	0.0393		0.090	0.0270	0.0340
20	4	BM (v)		2600	0.0100	0.0211		1560	0.0070	0.0153		0.030	0.0130	0.0260
21	1	DIVI (V)		2092	0.0102	0.0204		1002	0.0076	0.0153		0.580	0.0127	0.0255
20	DM (A)	DIVI (V)	-	2998	0.0101	0.0201		1479	0.0124	0.0249		0.494	0.0160	0.0320
	DIVI (V)	+	min	2092	0.0079	0.0158	min	14/9	0.0076	0.0153	min	0.49	0.0118	0.0237
			max	2998	0.0185	0.0370	max	2380	0.0196	0.0393	max	0.87	0.0270	0.0540
1.0000000000	BM (V)	av	erage	2170	0.0105	0.0211	average	1922	0.0117	0.0234	average	0.70	0.0158	0.0315
	BM (v)	1	stdev	105	0.0036	0.0073	stdev	340	0.0045	0.0090	stdev	0.14	0.0056	0.0112
	BM (v)	%	stdev	3.8		····	%stdev	17.7			%stdev	19.4		
	-						0		· · · · · · · · · · · · · · · · · · ·					
	BM (h & v)	min	2637	0.0078	0.0156	min	1236	0.0076	0.0153	min	0.42	0.0116	0.0232
	BM (h & v)	max	2998	0.0201	0.0402	max	2380	0.0340	0.0680	max	0.87	0.0349	0.0698
	BM (h & v) av	erage	2792	0.0110	0.0221	average	1687	0.0118	0.0237	average	0.61	0.0165	0.0330
	BM (h & v)	stdev	88	0.0033	0.0065	stdev	287	0.0049	0.0099	stdev	0.11	0.0050	0.0100
	BM (h & v) %	stdev	3.2			%stdev	17.0			%stdev	18.6		
23	2	GI	1	2711	0.0095	0.0189	1000 A.S. 100	2307	0.0096	0.0191		0.851	0.0134	0.0269
23	3	GI	-	2750	0.0117	0.0234		2371	0.0144	0.0287		0.862	0.0185	0.0370
24	2	GI		2786	0.0079	0.0159		2323	0.0082	0.0164		0.834	0.0114	0.0228
24	3	GI		2732	0.0093	0.0186		2260	0.0082	0.0164		0.827	0.0124	0.0248
24	4	GI	-	2702	0.0111	0.0223		2240	0.0100	0.0219		0.021	0.0124	0.0240
24	-	GI		2700	0.0095	0.0223		2243	0.0103	0.0210		0.001	0.0100	0.0312
24	6	GI		2713	0.0000	0.0109		2217	0.0137	0.0275		0.017	0.0161	0.0323
24	0 7			2191	0.0090	0.01/9		2303	0.0074	0.0148		0.824	0.0116	0.0233
24	1	GI		29/4	0.0103	0.0206		2519	0.0106	0.0213		0.847	0.0148	0.0297
24	8	GI		2900	0.0102	0.0203		2462	0.0077	0.0153	-	0.849	0.0127	0.0255
24	9	GI		2783	0.0169	0.0337		2419	0.0105	0.0211		0.869	0.0199	0.0398
24	10	GI		2878	0.0111	0.0221		2396	0.0084	0.0168		0.832	0.0139	0.0277

Results Summary

Page 1 of 3

StemRad TLD Data Results report version 14May.xlsx

Appendix C TLD Data Results for TLDs Contained Within RANDO Phantom - StemRad Belt

Measu Loc	irement ation				Belt Off				Belt On				Belt On / Belt	Off
Phantom Slice Number	Slice Cavity Number	Tissue Type		Absorbed Dose (mrad)	Relative Standard Uncertainty	Relative Expanded Uncertainty k=2		Absorbed Dose (mrad)	Relative Standard Uncertainty	Relative Expanded Uncertainty k=2		Ratio	Relative Standard Uncertainty	Relative Expanded Uncertainty k=2
24	11	GI		2886	0.0144	0.0288		2460	0.0114	0.0228		0.852	0.0184	0.0367
25	2	GI		2898	0.0147	0.0295		2164	0.0110	0.0220		0.747	0.0184	0.0368
25	3	GI		2762	0.0093	0.0187	8	2086	0.0113	0.0226		0.755	0.0146	0.0293
25	4	GI		2704	0.0108	0.0217		2077	0.0108	0.0216		0.768	0.0153	0.0306
25	5	GI		2758	0.0161	0.0323		2116	0.0162	0.0324		0.767	0.0229	0.0457
25	6	GI		2858	0.0091	0.0183		2132	0.0097	0.0193		0.746	0.0133	0.0266
25	1	GI		2990	0.0100	0.0200		2352	0.0117	0.0234	1000	0.787	0.0154	0.0308
20	0			2001	0.0097	0.0194		2287	0.0093	0.0186		0.794	0.0134	0.0269
25	9	GI	122010	2003	0.0085	0.0169		2285	0.0141	0.0281		0.793	0.0164	0.0328
25	10	GI		2914	0.0067	0.0174		2294	0.0135	0.0270		0.787	0.0161	0.0321
26	2	GI		2831	0.0232	0.0304		2245	0.0104	0.0329	1.000	0.708	0.0301	0.0602
26	3	GI		2767	0.0146	0.0291		1983	0.0210	0.0435		0.700	0.0233	0.0403
26	4	GI	0.00015-0	2713	0.0124	0.0249		1953	0.0138	0.0277		0.720	0.0235	0.0477
26	5	GI		2701	0.0085	0.0170		1931	0.0101	0.0202		0.715	0.0132	0.0372
26	6	GI		2760	0.0076	0.0152		1916	0.0088	0.0176		0.694	0.0116	0.0232
26	7	GI		2989	0.0076	0.0153	-	2131	0.0100	0.0201		0.713	0.0126	0.0252
26	8	GI		2882	0.0093	0.0186		2110	0.0105	0.0209		0.732	0.0140	0.0280
26	9	GI		2826	0.0089	0.0178	internation was	2051	0.0076	0.0151		0.726	0.0117	0.0234
26	10	GI		2841	0.0079	0.0159		2037	0.0082	0.0165		0.717	0.0115	0.0229
26	11	GI		2937	0.0082	0.0163		2067	0.0087	0.0174		0.704	0.0119	0.0238
27	2	GI		2786	0.0125	0.0249		1892	0.0097	0.0194		0.679	0.0158	0.0316
27	3	GI		2751	0.0113	0.0225		1883	0.0184	0.0368		0.684	0.0216	0.0431
27	4	GI		2672	0.0102	0.0203		1862	0.0110	0.0219		0.697	0.0150	0.0299
27	5	GI		2657	0.0092	0.0183		1841	0.0121	0.0242		0.693	0.0152	0.0303
27	6	GI		2716	0.0079	0.0158		1829	0.0080	0.0160		0.673	0.0112	0.0224
27	7	GI		2984	0.0114	0.0227		1995	0.0135	0.0270		0.669	0.0177	0.0353
27	8	GI		2862	0.0133	0.0265		2015	0.0132	0.0264		0.704	0.0187	0.0374
27	9	GI	1000	2829	0.0099	0.0198		1971	0.0086	0.0172		0.697	0.0131	0.0262
27	10	GI		2789	0.0136	0.0272		1915	0.0112	0.0224		0.687	0.0176	0.0352
21	11	GI.		2953	0.0092	0.0184		1941	0.0080	0.0160		0.657	0.0122	0.0244
20	0	CI		2000	0.0101	0.0202		1790	0.0113	0.0227	1200000000	0.623	0.0152	0.0304
20	10	GI		2705	0.0114	0.0229		1790	0.0076	0.0156		0.651	0.0139	0.0277
20	11	GI		2705	0.0054	0.0100		1707	0.0084	0.0167		0.655	0.0126	0.0252
28	12	GI		2770	0.0208	0.0416		1729	0.0130	0.0301		0.637	0.0239	0.0479
28	13	GI		2879	0.0132	0.0265		1883	0.0204	0.0400		0.654	0.0313	0.0324
28	14	GI		2824	0.0084	0.0167		1890	0.0146	0.0292		0.669	0.0168	0.0337
28	15	GI		2851	0.0082	0.0165		1808	0.0126	0.0252		0.634	0.0151	0.0301
	1	-	min	2657	0.0076	0.0152	min	1729	0.0074	0.0148	min	0.62	0.0112	0.0224
			max	2990	0.0252	0.0504	max	2519	0.0234	0.0468	max	0.87	0.0313	0.0626
		ave	erage	2818	0.0110	0.0220	average	2081	0.0117	0.0233	average	0.74	0.0162	0.0324
			stdev	91	0.0035	0.0069	stdev	217	0.0037	0.0074	stdev	0.07	0.0045	0.0090
		%	stdev	3.2			%stdev	10.4			%stdev	9.8		
30	6	ovary		2703	0.0091	0.0181		1763	0.0096	0.0191		0.652	0.0132	0.0264
30	7	ovary		2683	0.0104	0.0207		1767	0.0210	0.0419		0.659	0.0234	0.0468
			min	2683	0.0091	0.0181	min	1763	0.0096	0.0191	min	0.652	0.0132	0.0264
			max	2703	0.0104	0.0207	max	1767	0.0210	0.0419	max	0.659	0.0234	0.0468
		ave	erage	2693	0.0097	0.0194	average	1/65	0.0153	0.0305	average	0.656	0.0183	0.0366
		0/	stdev	14	0.0009	0.0018	stdev	2	0.0081	0.0161	stdev	0.00	0.0072	0.0144
		%	saev	0.5			%SOEV	0.1			%sdev	0.7		
	Note: BM(h	n) and Bl	M(v) a	re bone mar	row in hip and y	ertebrae, resp	ectively,	GI is gastroir	testinal tract, a	and OVARY ar	e locations	s if this RA	NDO was	
	fema	ale based	d on ar	natomical ma	arkers.									
13	1	**		2987	0.0087	0.0174		2957	0.0099	0.0197		0.990	0.0131	0.0263
 The initia plausible ex chips were to 	I C.V. of the planation wa	3 chip rea s that the By proper	dings f stackir ly re-m	or these mea ng order of the atching ECC:	surement location e chips within the s to readings for e	s was larger th se 4 affected ca each cavity, it w	an could b wities was as possible	e explained by mixed up durir to obtain low	the fundamentang the initial "Be C.V. values sim	I reproducibility t Off" irradiation ilar to the C.V. v	of the TLD and thus th alues for th	analysis sys ne chip ident e unaffected	stem being used ities and ECCs d locations. The	I. The most applied to the same

plausible explanation was that the stacking order of the chips within these 4 affected cavities was mixed up during the initial "Belt Off" irradiation and thus the chip identities and ECCs applied to the chips were unmatched. By properly re-matching ECCs to readings for each cavity, it was possible to obtain low C.V. values similar to the C.V. values for the unaffected locations. The same phantom loading sequence was used for both the "Belt Off" and the subsequent "Belt On" irradiations. The fact that the pattern of locations with large C.V. values was repeated in the second irradiation (Belt On), confirms that the stacking order was indeed mixed during the first irradiation. The fact that the pattern of locations work that the stacking order was indeed mixed during the first irradiation. The fact that the pattern of affected locations was repeated between first and second irradiations gives high confidence to our hypothesis that the stacking order of chips was mixed up during the first irradiation. The readings with initially applied ECCs, without ECCs, and with the correct ECCs applied are shown on the "Test Results (Belt Off)" and "Test Results (Belt On)" worksheets. The potential impact on the measured absorbed dose is also shown. The final values used for reporting purposes are based on the chip readings with properly matched ECCs. It should be noted that the mean absorbed dose value reported for each of the affected locations changed by less than 3% for all but one location as a result of the corrections made to the individual chip readings. The most affected location 29-9 for "Belt On" irradiation), decreased by 6.6%, and the reported value is only 3.3% different than the equivalent cavity on the opposite side of phantom.

Appendix C TLD Data Results for TLDs Contained Within RANDO Phantom - StemRad Belt

	tion			Belt Off			Belt On			Belt On / Belt	Off
Phantom Slice Number	Slice Cavity Number	Tissue Type	Absorbed Dose (mrad)	Relative Standard Uncertainty	Relative Expanded Uncertainty k=2	Absorber Dose (mrad)	Relative Standard Uncertainty	Relative Expanded Uncertainty k=2	Ratio	Relative Standard Uncertainty	Relative Expanded Uncertainty k=2
** This loca location was	ation in Sli s chosen s	ce # 13 w uch that i	vas used as a qua t would not be int	alitiy control loca fluenced by the	ation to verify th presence or ab	nat equal doses wer osence of the shield	e delivered ot th belt.	e phantom for th	ne Belt Off and Be	It On irradiation	s. The
Background exposed in reading of e absorbed do	<u>I subtraction</u> phantom. even the low oses report	on: For bo The unce west expo ted above	th rounds of pharent entainty in the mean osed test chips. T e. Statistics on t	ntom irradiation an gross readin hus the underta he gross readin	s, the mean gro g of unexposed ainty in the back gs of unexpose	oss reading on unex d chips as represent kground reading wa ad background cont	posed blank ch ed by the stand s not included ir ol chips for eac	ips was small co ard error of the n n the propagation h round of irradia	mpared to the gro nean was negligit n of overall uncert ations are shown	ess reading of te le compared to ainty for the me below.	est chips the gross asured
		10-1-12 (S.C. 10-1)					Belt Off	Belt On			
		-				min (nt	0 333	0.365			
						max (n)	0.625	0.621			
		2008.02028				arithmetic mean (ne	0.477	0.457			1999) - 1999 - 1999
						sample stdev (no	0.072	0.061			
						C.	0.150	0.641			
							n 51	51			2.
						std err of mean (no	0.010	0.009			
					std err of me	an (mrad equivaler	t) 0.130	0.113			
Reader Call irradiator us chips thusly response w from chip to	ed to expo exposed. as calculat chip inclu	the the TI The ass and from t des unce	LD chips that wer essed fractional u he relative standa rtainty in the assi	e used to calibr incertainty in ai ard error of the gned ECCs tha	ate the Harsha r kerma rate for mean reader re t are applied to	w Model 5500 TLD r this source (# 318 esponse in nanoCou the chip readings,	reader (TTP 2) 131) at the 3 m lombs measure is well as variat	with the fractiona eter distance is 0 d with 50 expose pilitiy in reader se	al uncertainty (1 o 0.0071. The fracti ed TLD chips. The ensitivity from rea) in reader resp onal uncertainty e variabilitiy in re dout to readout.	oonse to the in reader eader respon The
Reader Call irradiator us chips thusly response w from chip to fractional ur positioning included in t	sed to exposed. rexposed. ras calculate chip incluincertainty i during irradithe uncertainty	bese the TI The assided from t des unce n reader diation of ainty calc	LD chips that wer essed fractional u he relative stand- rtainty in the assi resopnse was de calibration chips, ulation.	e used to calibr incertainty in ai ard error of the gned ECCs tha termined to be and uncertaint	ate the Harsha r kerma rate for mean reader re t are applied to 0.0023 for the b ies in the conve	w Model 5500 TLD r this source (# 318- asponse in nanoCou- the chip readings, belt off exposure co ersion factor Ka use	reader (TTP 2) 131) at the 3 mi lombs measure is well as variat idition and 0.00 d to convert from	with the fractiona eter distance is 0 d with 50 expose illitiy in reader se 21 for the belt or n air kerma to H	al uncertainty (1 o 0.0071. The fracti ed TLD chips. The ensitivity from rea n exposure condit p(10) were consid) in reader resp onal uncertainty a variabilitiy in re dout to readout. ion. Uncertainti ered negligible	oonse to the v in reader eader respon The es in and not
Reader Call irradiator us chips thusly response w from chip to fractional ur positioning included in	sed to exposed. as calculate ochip incluincertainty i during irradithe uncertainty	bese the TI The assured from t des unce n reader diation of ainty calc	LD chips that weressed fractional under the relative stands trainty in the assister resonance was de calibration chips, ulation.	e used to calibr incertainty in ai ard error of the gned ECCs tha termined to be and uncertaint	ate the Harsha r kerma rate for mean reader re t are applied to 0.0023 for the t ies in the conve	w Model 5500 TLD r this source (# 318- esponse in nanoCou- the chip readings, belt off exposure co ersion factor Ka use	reader (TTP 2) 131) at the 3 mi lombs measure is well as variat adition and 0.00 d to convert from	with the fractiona eter distance is 0 d with 50 expose oilitiy in reader se 21 for the belt or n air kerma to H	al uncertainty (1 o 0.0071. The fracti ed TLD chips. The ansitivity from rea n exposure condit p(10) were consid) in reader resp onal uncertainty a variabilitiy in re dout to readout. ion. Uncertainti lered negligible	oonse to the v in reader eader respon: The es in and not
Reader Call irradiator us chips thusly response w from chip to fractional ur positioning included in	sed to exposed. exposed. as calculat o chip incluincertainty i during irradithe uncertainty	bese the TI The assided from t des unce n reader diation of ainty calc	LD chips that wer essed fractional u he relative standi rtainty in the assi resopnse was de calibration chips, ulation.	e used to calibr incertainty in ai ard error of the gned ECCs tha termined to be and uncertaint	ate the Harsha r kerma rate for mean reader re t are applied to 0.0023 for the t ies in the conve	w Model 5500 TLD r this source (# 318- esponse in nanoCou the chip readings, belt off exposure co ersion factor Ka use	reader (TTP 2) 131) at the 3 mi lombs measure is well as variat adition and 0.00 d to convert fror Belt Off	with the fractiona eter distance is 0 d with 50 expose jility in reader se 21 for the belt or n air kerma to H Belt On	al uncertainty (1 o 0.0071. The fract ed TLD chips. The ensitivity from rea n exposure condit p(10) were consid) in reader resp onal uncertainty a variabilitiy in re dout to readout. ion. Uncertainti lered negligible	oonse to the r in reader eader respon The es in and not
Reader Call irradiator us chips thusly response w from chip to fractional ur positioning included in t	sed to exposed. exposed. as calculat o chip incluin certainty i during irrad the uncerta	bese the TI The assided from t des unce n reader diation of ainty calc	LD chips that wer essed fractional u he relative stand rtainty in the assi resopnse was de calibration chips, ulation.	e used to calibr incertainty in ai ard error of the gned ECCs tha termined to be and uncertaint	ate the Harsha r kerma rate for mean reader re t are applied to 0.0023 for the t ies in the conve	w Model 5500 TLD r this source (# 318- seponse in nanoCou- the chip readings, belt off exposure co- ersion factor Ka use	reader (TTP 2) 131) at the 3 m lombs measure is well as variat dition and 0.00 d to convert from Belt Off 1) 1000	with the fractiona eter distance is 0 d with 50 expose vilitiy in reader se 21 for the belt or n air kerma to H Belt On 1000	al uncertainty (1 o 0.0071. The fract ed TLD chips. The ensitivity from rea n exposure condit p(10) were consid) in reader resp onal uncertainty e variability in re- dout to readout. ion. Uncertainti lered negligible	ponse to the v in reader eader respon The es in and not
Reader Call irradiator us chips thusly response w from chip to fractional ur positioning i included in t	sed to exposed. as calculat o chip inclu ncertainty i during irrad the uncerta	bese the TI The asso- ted from t des unce n reader diation of ainty calco-	LD chips that wer essed fractional u he relative stand rtainty in the assi resopnse was de calibration chips, ulation.	e used to calibr incertainty in ai ard error of the gned ECCs tha termined to be and uncertaint	ate the Harsha r kerma rate for mean reader re t are applied to 0.0023 for the b ies in the conve D andard uncerta	w Model 5500 TLD r this source (# 318- seponse in nanoCou- the chip readings, belt off exposure co- ersion factor Ka use elivered Dose (mra inty in delivered do	reader (TTP 2) 131) at the 3 m lombs measure is well as variat dition and 0.00 d to convert from Belt Off 1) 1000 e 0.0071	with the fractiona eter distance is 0 d with 50 expose vilitiy in reader se 21 for the belt or n air kerma to H Belt On 1000 0.0071	al uncertainty (1 o 0.0071. The fract ed TLD chips. The ensitivity from rea n exposure condit p(10) were consid) in reader resp onal uncertainty e variability in re dout to readout. ion. Uncertainti lered negligible	conse to the r in reader eader respon The es in and not
Reader Call irradiator us chips thusly response w from chip to fractional ur positioning included in	sed to exposed. as calculat o chip inclu ncertainty i during irrad the uncerta	bese the TI The associated from to des unce n reader diation of ainty calc	LD chips that wer essed fractional u he relative stand rtainty in the assi resopnse was de calibration chips, ulation.	e used to calibr incertainty in ai ard error of the gned ECCs tha termined to be and uncertaint Relative st	ate the Harsha r kerma rate for mean reader re t are applied to 0.0023 for the b ies in the conve bies in the conve D andard uncerta	w Model 5500 TLD r this source (# 318- seponse in nanoCou the chip readings, belt off exposure co ersion factor Ka use elivered Dose (mra inty in delivered do ean TL response (mta	reader (TTP 2) 131) at the 3 m lombs measure is well as variat dition and 0.00 d to convert from Belt Off 1) 1000 e 0.0071 c) 76.96	with the fractiona eter distance is 0 d with 50 exposi- vilitiy in reader se 21 for the belt or n air kerma to H Belt On 1000 0.0071 76.11	al uncertainty (1 o 0.0071. The fract ed TLD chips. The ensitivity from rea n exposure condit p(10) were consid) in reader resp onal uncertainty e variability in re dout to readout. ion. Uncertainti lered negligible	ponse to the r in reader eader respon The es in and not
Reader Call irradiator us chips thusly response w from chip to fractional ur positioning included in t	sed to exposed. exposed. as calculat o chip inclu ncertainty i during irra- the uncerta	bese the TI The associated from t des unce n reader diation of ainty calc	LD chips that weressed fractional under the relative stand, trainty in the assi resopnse was de calibration chips, ulation.	e used to calibr incertainty in ai ard error of the gned ECCs tha termined to be and uncertaint Relative sta Relative	ate the Harsha r kerma rate for mean reader re t are applied to 0.0023 for the b ies in the conve bies in the conve D andard uncerta standard uncer	w Model 5500 TLD r this source (# 318- seponse in nanoCou the chip readings, belt off exposure co ersion factor Ka use elivered Dose (mra inty in delivered do pan TL response (m rtainty in TL response	reader (TTP 2) 131) at the 3 m lombs measure as well as variat dition and 0.00 d to convert from Belt Off 1) 1000 e 0.0071 c) 76.96 e 0.0023	with the fractiona eter distance is 0 d with 50 expose illity in reader se 21 for the belt or n air kerma to H Belt On 1000 0.0071 76.11 0.0021	al uncertainty (1 o 0.0071. The fract ed TLD chips. The ensitivity from rea n exposure condit p(10) were consid) in reader resp onal uncertainty e variability in re dout to readout. ion. Uncertainti lered negligible	ponse to the r in reader eader respon The es in and not
Reader Call irradiator us chips thusly response w from chip to fractional ur positioning included in i	sed to expor exposed. as calculat o chip inclu nocertainty i during irra- the uncerta	bese the TI The associated from t des unce n reader diation of ainty calc	LD chips that weressed fractional under the relative standi- trainty in the assi resopnse was de calibration chips, ulation.	e used to calibr incertainty in ai ard error of the gned ECCs tha termined to be and uncertaint Relative sta Relative Relative Reader	ate the Harsha r kerma rate for mean reader re t are applied to 0.0023 for the b ies in the conve ies in the conve bies in the conve ies andard uncerta standard uncerta Calibration Fa	w Model 5500 TLD r this source (# 318- seponse in nanoCoi the chip readings, belt off exposure co ersion factor Ka use elivered Dose (mra inty in delivered do aan TL response (mr tainty in TL response ctor - RCF (nC/mra	reader (TTP 2) 131) at the 3 m lombs measure as well as variat dition and 0.00 d to convert from Belt Off b) 1000 e 0.0071 c) 76.96 e 0.0023 c) 0.077	with the fractiona eter distance is 0 d with 50 expose illity in reader se 21 for the belt or n air kerma to H Belt On 1000 0.0071 76.11 0.0021 0.076	al uncertainty (1 o 0.0071. The fract ed TLD chips. The ensitivity from rea n exposure condit p(10) were consid) in reader resp onal uncertainty e variability in re dout to readout. ion. Uncertainti ion. Uncertainti ered negligible	ponse to the r in reader eader respon The es in and not
Reader Call irradiator us chips thusly response w from chip to fractional ur positioning included in f	sed to expor exposed. as calculat o chip inclu- ncertainty i during irra- the uncerta	bee the TI The ass teed from t des unce n reader diation of ainty calc	LD chips that weressed fractional under the relative standi- rtainty in the assi resopnse was de calibration chips, ulation.	e used to calibr incertainty in ai ard error of the gned ECCs tha termined to be and uncertaint Relative str Relative Relative Reader	ate the Harsha r kerma rate for mean reader re t are applied to 0.0023 for the t ies in the conve ies in the conve ies in the conve ies andard uncerta standard uncert Calibration Fa relative s	w Model 5500 TLD r this source (# 318- seponse in nanoCou the chip readings, belt off exposure co ersion factor Ka use elivered Dose (mra inty in delivered do ean TL response (nor tainty in TL response ctor - RCF (nC/mra td uncertainty in RC	reader (TTP 2) 131) at the 3 m lombs measure as well as variat idition and 0.00 d to convert from Belt Off 4) 1000 e 0.0071 c) 76.96 e 0.0023 d) 0.0077 F 0.00745	with the fractiona eter distance is 0 d with 50 expose silitiy in reader se 21 for the belt or n air kerma to H Belt On 1000 0.0071 76.11 0.0021 0.076 0.00740	al uncertainty (1 o 0.0071. The fract ed TLD chips. Th- ensitivity from rea n exposure condit p(10) were consid) in reader resp onal uncertainty e variability in re dout to readout. ion. Uncertainti ered negligible	ponse to the r in reader eader respon The es in and not
Reader Call irradiator us chips thusly response w from chip to fractional ur positioning included in	sed to expor exposed. as calculat o chip inclu- ncertainty i during irra- the uncerta	bese the TI The assisted from t des unce n reader diation of ainty calco	LD chips that weressed fractional under the relative standi- trainty in the assi resopnse was de calibration chips, ulation.	e used to calibr incertainty in ai ard error of the gned ECCs tha termined to be and uncertaint Relative st Relative Relative Reader	ate the Harsha r kerma rate for mean reader re t are applied to 0.0023 for the t ies in the conve lies in the conve distant the convert D andard uncerta standard uncer Calibration Fa relative s	w Model 5500 TLD r this source (# 318- seponse in nanoCou the chip readings, belt off exposure co ersion factor Ka use elivered Dose (mra inty in delivered do aan TL response (mr tainty in TL response ctor - RCF (nC/mra td uncertainty in RC	reader (TTP 2) 131) at the 3 m lombs measure as well as variat idition and 0.00 d to convert from Belt Off 4) 1000 e 0.0071 c) 76.96 e 0.0023 d) 0.0077 F 0.00745	with the fractiona eter distance is 0 d with 50 exposs- ilitiy in reader se 21 for the belt or n air kerma to H Belt On 1000 0.0071 76.11 0.0021 0.076 0.00740	al uncertainty (1 o 0.0071. The fracti ed TLD chips. Th- ensitivity from rea n exposure condition p(10) were consid) in reader resp onal uncertainty e variability in re dout to readout. ion. Uncertainti iered negligible	ponse to the r in reader eader respon The es in and not
Reader Call irradiator us chips thusly response w from chip to fractional ur positioning included in 1	sed to expor exposed. as calculat o chip inclu- ncertainty i during irra- the uncerta	bese the TI The assisted from to des unce in reader diation of ainty calcion	LD chips that weressed fractional under the relative standi- trainty in the assister resopnse was de calibration chips, ulation.	e used to calibr incertainty in ai ard error of the gned ECCs tha termined to be and uncertaint Relative st Relative Reader	ate the Harsha r kerma rate for mean reader re t are applied to 0.0023 for the t ies in the conve iss in the conve during the conver- andard uncerta standard uncerta relative s	w Model 5500 TLD r this source (# 318- sponse in nanoCou the chip readings, belt off exposure co ersion factor Ka use elivered Dose (mra inty in delivered do aan TL response (mr tainty in TL response ctor - RCF (nC/mra td uncertainty in RC	reader (TTP 2) 1 131) at the 3 m lombs measure as well as variat idition and 0.00 d to convert from Belt Off 1) 1000 e 0.0071 c 0.0023 d) 0.0077 F 0.00745	with the fractiona eter distance is 0 d with 50 expose solidity in reader se 21 for the belt or n air kerma to H Belt On 1000 0.0071 76.11 0.0021 0.076 0.00740	al uncertainty (1 o 0.0071. The fraction ed TLD chips. The ensitivity from real n exposure consider (10) were consider () in reader resp onal uncertainty e variability in re dout to readout. ion. Uncertainti iered negligible	ponse to the r in reader eader respon The es in and not
Reader Call irradiator us chips thusly response w from chip to fractional ur positioning included in the mean free mean is the on the work	eter Reading of the unbiased sheets "Tes	base the TI The assisted from t des unce n reader diation of ainty calci- nation of ainty calci- nation of ainty calci- ainty calci- ai	LD chips that wer essed fractional u he relative standi trainty in the assi resopnse was de calibration chips, ulation.	e used to calibr incertainty in ai ard error of the gned ECCs tha termined to be and uncertaint Relative Relative Relative Reader ach phantom m y, divided by the d the standard Test Results (bo	ate the Harsha r kerma rate for mean reader re t are applied to 0.0023 for the t ies in the conve iss in the conve destination the standard uncerta calibration Fa relative s easurement loce e mean. The 3 error is an estin elt off).	w Model 5500 TLD r this source (# 318- sponse in nanoCou the chip readings, belt off exposure co ersion factor Ka use elivered Dose (mra inty in delivered do aan TL response (nd tainty in TL response ctor - RCF (nC/mra td uncertainty in RC cation, the fractiona chip readings are c mate of the uncertainty	reader (TTP 2) 1 131) at the 3 m lombs measure as well as variat idition and 0.00 d to convert from Belt Off 1) 1000 e 0.0071 c 0.0023 d) 0.0077 F 0.00745 uncertainty in the onsidered to be inty of the mean	with the fractiona eter distance is 0 d with 50 expose silitiy in reader se 21 for the belt or n air kerma to H Belt On 1000 0.0071 76.11 0.0021 0.076 0.00740 he TLD readout repeated indepe	al uncertainty (1 o 0.0071. The fraction ed TLD chips. The ansitivity from rea n exposure consider (10) were consider (1) in reader resp onal uncertainty e variability in re dout to readout. ion. Uncertainti ered negligible	ponse to the rin reader eader respon The es in and not
Test Dosime Test nosigneric to the work	eter Reading of the uncertainty of the unbiased isheets "Te	bese the TI The assisted from t des unce n reader diation of ainty calc	LD chips that wer essed fractional u he relative standi rtainty in the assi resopnse was de calibration chips, ulation.	e used to calibr incertainty in ai ard error of the gned ECCs tha termined to be and uncertaint Relative Relative Relative Reader ach phantom m ach phantom m d the standard Test Results (br	ate the Harsha r kerma rate for mean reader re t are applied to 0.0023 for the t ies in the conve ies ies in the conve ies	w Model 5500 TLD r this source (# 318- sponse in nanoCou the chip readings, belt off exposure co ersion factor Ka use elivered Dose (mra- inty in delivered do aan TL response (mr tainty in TL response ctor - RCF (nC/mra- td uncertainty in RC cation, the fractiona chip readings are com mate of the uncertaints	reader (TTP 2) ' 131) at the 3 mi lombs measure is well as variat dition and 0.00 d to convert from Belt Off 1) 1000 e 0.0071 c) 76.96 e 0.0023 d) 0.077 F 0.00745 uncertainty in the considered to be only of the mean	with the fractiona eter distance is 0 d with 50 expose lifty in reader se 21 for the belt or n air kerma to H Belt On 1000 0.0071 76.11 0.0021 0.076 0.00740 he TLD readout repeated indepe	al uncertainty (1 o 0.0071. The fract ed TLD chips. The nexposure condition p(10) were consider p(10) were co) in reader resp onal uncertainty e variability in re- dout to readout. ion. Uncertainti lered negligible	And a
Test Dosimute mean is the more more the work mean reader calib	eter Readi solutions of the uncertainty of the unbiased sheets "Tere assorbed Drach measuration factors of the uncertainty of the unbiased of the	best the TI The assisted from the des uncent diation of a best of the des uncent mass for each of the des uncent mass for each of the des uncent distribution of the des uncent mass for each of the des uncent distribution of the des u	LD chips that wer essed fractional u he relative stand rtainty in the assi resopnse was de calibration chips, ulation.	e used to calibr incertainty in ai ard error of the gned ECCs tha termined to be and uncertaint Relative sta Relative Reader ach phantom m y, divided by the d the standard Test Results (bi and "belt off" te ulated by combi ormed on the wo	ate the Harsha r kerma rate for mean reader re t are applied to 0.0023 for the b ies in the conve ies	w Model 5500 TLD r this source (# 318- seponse in nanoCou- the chip readings, belt off exposure co- ersion factor Ka user lelivered Dose (mra- inty in delivered do- ben TL response (mra- inty in delivered do- ben TL response (mra- tainty in the fractional chip readings are co- mate of the uncertainty the <u>Relative Standa</u> mal uncertainty in mra- t Results (belt on)" a	reader (TTP 2) ' 131) at the 3 mi lombs measure is well as variat dition and 0.00 d to convert from Belt Off b) 1000 e 0.0071 c) 76.96 e 0.0023 d) 0.077 F 0.00745 uncertainty in the onsidered to be onty of the mean d Uncertainty (in ean test dosime nd "Test Result	with the fractiona eter distance is 0 d with 50 expose 21 for the belt or n air kerma to H Belt On 1000 0.0071 76.11 0.0021 0.00740 he TLD readout repeated indeper . The standard e. fractional unc eter reading for e is (belt off)". Th	al uncertainty (1 o 0.0071. The fract ed TLD chips. The mainivity from rea n exposure condit p(10) were consider p(10) were consi) in reader resp onal uncertainty e variability in re- dout to readout. ion. Uncertainti lered negligible	bonse to the rin reader eader respon The es in and not dard error of e quantity. T is calculated ose shown ertainty in was
Test Dosime mean is the on the work Measured A above for ea reader Call	eter Readi exposed. as calculat o chip inclu neertainty i during irra- the uncerta the uncerta eter Readi eading of the unbiased scheets "Te asorbed Do ach measu- ration factor orom the rel	ngs for expension for the second states of the stat	LD chips that wer essed fractional u he relative standi- rtainty in the assi resopnse was de calibration chips, ulation.	e used to calibr incertainty in ai ard error of the gned ECCs tha termined to be and uncertaint Relative st Relative Reader ach phantom m y, divided by the dithe standard Test Results (bi and "belt off" te ulated by combi ormed on the w by multiplying l	ate the Harsha r kerma rate for mean reader re t are applied to 0.0023 for the b ies in the conver- ies in the conver- bits in the conver- andard uncerta me standard	w Model 5500 TLD r this source (# 318- seponse in nanoCou- the chip readings, belt off exposure co- ersion factor Ka user elivered Dose (mra- inty in delivered do- ben TL response (mra- inty in delivered do- ben TL response (mra- tainty in the fractional ctor - RCF (nC/mra- td uncertainty in RC beneficial and the second of the uncertainty in the cation, the fractional chip readings are co- mate of the uncertainty the <u>Relative Standa</u> anal uncertainty in mr t Results (belt on)" a factor, k=2)	reader (TTP 2) ' 131) at the 3 mi lombs measure is well as variat dition and 0.00 d to convert from Belt Off b) 1000 e 0.0071 c) 76.96 e 0.0023 d) 0.077 F 0.00745 uncertainty in the considered to be inty of the mean d Uncertainty (international to be international to be inty of the mean d Uncertainty (international to be inty of the mean d Uncertainty (international to be inty of the mean d Uncertainty (international to be inthe international to be inthe inthe international to be inthe international to be inthe inthe inthe international to be inthe inthe inthe inthe inthe international to be inthe inthe	with the fractiona eter distance is 0 d with 50 expose ility in reader se 21 for the belt or n air kerma to H Belt On 1000 0.0071 76.11 0.0021 0.00740 he TLD readout repeated independent The standard of e. fractional unce ter reading for e is (belt off)". Th	al uncertainty (1 o 0.0071. The fract ed TLD chips. The maitivity from rea n exposure condit p(10) were consider p(10) were consi) in reader responal uncertainty e variability in re- dout to readout. ion. Uncertainti lered negligible	bonse to the rin reader eader respon The es in and not dard error of e quantity. This calculated cose shown ertainty in was
Test Dosimute mean is the mean remean is the mean remean is the on the work above for ear reader calib calculated fi	eter Readi as calculate o chip inclu neertainty i during irra- the uncerta the uncerta the uncerta eter Readi as different as different	bee the TI The ass teed from t des unce n reader diation of ainty calc ngs for exe a 3 chips estimate st Result bse: For I rement k or. This c	LD chips that wer essed fractional u he relative stand rtainty in the assi resopnse was de calibration chips, ulation.	e used to calibr incertainty in ai ard error of the gned ECCs tha termined to be and uncertaint Relative sta Relative Reader ach phantom m y, divided by the d the standard Test Results (bi and "belt off" te ulated by combio primed on the we by multiplying l	ate the Harsha r kerma rate for mean reader re t are applied to 0.0023 for the b ies in the conver- ies in the conver- ies in the conver- dent of the b andard uncerta me standard uncerta calibration Fa relative s easurement loc e mean. The 3 error is an estil elt off). est conditions, t ining the fractio porksheets "Test by a coverage f	w Model 5500 TLD r this source (# 318- seponse in nanoCou- the chip readings, belt off exposure co- ersion factor Ka user lelivered Dose (mra- inty in delivered do- ben TL response (mra- inty in delivered do- ben TL response (mra- tainty in the fractional chip readings are of mate of the uncertainty in mra- the <u>Relative Standa</u> mal uncertainty in mra- factor, k=2)	reader (TTP 2) ' 131) at the 3 mi lombs measure is well as variat dition and 0.00 d to convert from Belt Off b) 1000 e 0.0071 c) 76.96 e 0.0023 d) 0.00745 i) 0.00745 uncertainty in the onsidered to be inty of the mean d Uncertainty (in ean test dosime nd "Test Result	with the fractiona eter distance is 0 d with 50 expose ilitiy in reader se 21 for the belt or n air kerma to H Belt On 1000 0.0071 76.11 0.0021 0.0076 0.00740 he TLD readout repeated indepe . The standard of the	al uncertainty (1 o 0.0071. The fract ed TLD chips. The ensitivity from rea n exposure conditive p(10) were consider p(10) were c) in reader responal uncertainty evariability in re- dout to readout. ion. Uncertainti lered negligible	bonse to the rin reader eader respon The es in and not dard not dard error of e quantity. This calculated cose shown ertainty in was

2

Appendix D – Measurement Uncertainty Calculations

Dosimetry-	based Ev	aluation of StemRad Shielding Belt Effectiveness	
Model Equati	on:		
Ratio _{dos}	=((Dose _{beltor}	,*Irrad _{offset})/Dose _{beltoff});	
Dose _{belt}	on=TLDAvg	leton	
Dose _{belt}	off=TLDAvg	beltoff [,]	
Irrad _{offse}	t=(distancet	elton [^] 2/distance _{beltoff} [^] 2)*S _{anisotropy} *S _{transit} ;	
distance	e _{belton} =0.4*(($h_{op} + h_{os}^{1/2} + (I + I_{op} + I_{os}^{1/2})^{0.5} + 0.4^{(h_{op} + h_{os}^{1/2} + I_{os}^{1/2})^{0.5} + 0.4^{(h_{op} + h_{os}^{1/2})^{0.5} + 0.4^{(h_$	5+
0.2*((h3	+h _{op} +h _{os})^2	+(I+I _{op} +I _{os})^2)^0.5;	
distance	e _{beltoff} =0.4*((h1)^2+(l)^2)^0.5+0.4*((h2)^2+(l)^2)^0.5+0.2*((h3)^2+(l)^2)^0.5	
List of Quanti	ties:		
Quantity	Unit	Definition	
Ratio _{dos}	unitiess	Ratio of the Belt-on to Belt-off doses (shielding effectiveness)	
Dose _{belton}	mrad	Dose determined from the irradiation with the shield belt on	
Irrad _{offset}	unitiess	Difference in	
Dose _{beltoff}	mrad	Dose determined from the irradiation without the beit	
TLDAVg _{belton}	mrad	Average of 3 chips irradiated with the belt on	
ILDAVg _{beltoff}	mrad	Average of 3 chips irradiated with the belt off	
distance _{belton}	cm	actual distance (incl. possible positioning errors)	
distance _{beltoff}	cm	reference distance (composite of five levels)	
S _{anisotropy}	unitiess	Lateral anisotropy of the source (potential diffrence of the second irreversus the first)	adiation
S _{transit}	unitless	Influence of source placing the source and removing it from the irrad position	lation
h1	cm	(Height-1) Bottom and top offset distance from middle (reference) so height	ource
h _{op}	cm	Height offset of phantom	
h _{os}	cm	Height offset of source	
I	cm	Lateral distance from source (at midpoint position)	
l _{op}	cm	Lateral distance offset of phantom	
l _{os}	cm	Lateral distance offset of source	
h2	cm	(Height-2) Middle posittion between h1 and h2	
h3	cm	(Height-3) Reference height - on the level of the phantom mid-point (29)	(Slice
		[23)	
ate: 06/02/2015	File: StemF	Rad Belt-on Belt-off Ratio.smu	Page 1 of 6

DAvg _{belton} : r the belt-on chip position 3.80% and \$ DAvg _{beltoff} : r the baselin ly about 10 Ifwidth of 5.0 iisotropy: e source ani- erence TLDs hin 1%. Base insit: sume source ivered dose s is the mea second (bel	Dosimetry-based Evalu Type B trapezoid distrik Value: 1.000 mrad Halfwidth of Limits: 6.8 Shapefactor: 0.499 irradiation, the precision (2: ns exceeded 0.0339. Theref Shapefactor of 0.0339/0.068 Type B trapezoid distrik Value: 1.000 mrad Halfwidth of Limits: 5.04 Shapefactor: 0.595 ne (reference) irradiation, the chip positions exceeded 0.0 04% and Shapefactor of 0.0 Type B rectangular dist Value: 1.000 unitless Halfwidth of Limits: 1 % sotropy has not been measus s placed at phantom slice 13 ed on that information, it is s Type B rectangular dist Value: 1.000 unitless Halfwidth of Limits: 0 ur e was at 4' past the irradiatio to the phantom compared to Constant Value: 130 cm	aation of StemRad Shielding Belt Effectiveness bution % s) of the 3-chip readings ranged from 0.0148 to 0.0680. fore, will conclude this to be a trapezoidal distribution with 0, or 0.499. bution 4 % e precision (2s) of the 3-chip readings ranged from 0.015 3000. Therefore, will conclude this to be a trapezoidal dis 300/0.0504, or 0.595. tribution ured. 1% is a judgemental estimate; however, evidence 8 show the difference between the second and first irrad suspected that 1% is a conservatively high estimate. ribution hitless on distance for about 10 sec. This will have negligible im o the 8 hour irradiation time. Assign 0 influence for this.	Only about ith Halfwidth 52 to 0.0504 stribution wit from the liations to be
DAvg _{belton} : r the belt-on chip position 5.80% and S DAvg _{beltoff} : r the baselin ly about 10 lfwidth of 5.0 isotropy: e source ani- erence TLDs hin 1%. Base insit ² sume source ivered dose s is the mea second (bel	Type B trapezoid distrik Value: 1.000 mrad Halfwidth of Limits: 6.8 Shapefactor: 0.499 irradiation, the precision (2: ns exceeded 0.0339. Theref Shapefactor of 0.0339/0.068 Type B trapezoid distrik Value: 1.000 mrad Halfwidth of Limits: 5.04 Shapefactor: 0.595 the (reference) irradiation, the chip positions exceeded 0.0 04% and Shapefactor of 0.0 Type B rectangular dist Value: 1.000 unitless Halfwidth of Limits: 1 % isotropy has not been measu s placed at phantom slice 13 ed on that information, it is s Type B rectangular dist Value: 1.000 unitless Halfwidth of Limits: 0 ur e was at 4' past the irradiation to the phantom compared to Constant Value: 130 cm	bution % s) of the 3-chip readings ranged from 0.0148 to 0.0680. fore, will conclude this to be a trapezoidal distribution with 0, or 0.499. bution 4 % a precision (2s) of the 3-chip readings ranged from 0.015 0300. Therefore, will conclude this to be a trapezoidal dis 300/0.0504, or 0.595. tribution ured. 1% is a judgemental estimate; however, evidence 3 show the difference between the second and first irrad suspected that 1% is a conservatively high estimate. ribution hitless on distance for about 10 sec. This will have negligible im o the 8 hour irradiation time. Assign 0 influence for this.	Only about ith Halfwidth 52 to 0.0504 stribution wit from the liations to be
r the belt-on chip position 5.80% and \$ DAvg _{beltoff} : r the baselin ly about 10 lfwidth of 5.0 isotropy: e source ani erence TLDs hin 1%. Base insit: sume source ivered dose s is the mea second (bel	irradiation, the precision (2 ns exceeded 0.0339. Theref Shapefactor of 0.0339/0.068 Type B trapezoid district Value: 1.000 mrad Halfwidth of Limits: 5.04 Shapefactor: 0.595 the (reference) irradiation, the chip positions exceeded 0.0 04% and Shapefactor of 0.0 Type B rectangular dist Value: 1.000 unitless Halfwidth of Limits: 1 % isotropy has not been measu is placed at phantom slice 13 ed on that information, it is s Type B rectangular dist Value: 1.000 unitless Halfwidth of Limits: 0 ur e was at 4' past the irradiation to the phantom compared to Constant Value: 130 cm	s) of the 3-chip readings ranged from 0.0148 to 0.0680. fore, will conclude this to be a trapezoidal distribution wit 0, or 0.499. bution 4 % e precision (2s) of the 3-chip readings ranged from 0.015 0300. Therefore, will conclude this to be a trapezoidal dis 300/0.0504, or 0.595. tribution a ured. 1% is a judgemental estimate; however, evidence 3 show the difference between the second and first irrad suspected that 1% is a conservatively high estimate. ribution hitless on distance for about 10 sec. This will have negligible im o the 8 hour irradiation time. Assign 0 influence for this.	Only about ith Halfwidth 52 to 0.0504 stribution wit from the liations to be
DAvg _{beltoff} : r the baselin ly about 10 lfwidth of 5.(iisotropy: e source ani erence TLDs hin 1%. Base insit: sume source ivered dose s is the mea second (bel	Type B trapezoid district Value: 1.000 mrad Halfwidth of Limits: 5.04 Shapefactor: 0.595 The (reference) irradiation, the chip positions exceeded 0.0 04% and Shapefactor of 0.0 Type B rectangular dist Value: 1.000 unitless Halfwidth of Limits: 1 % Type B rectangular dist Value: 1.000 unitless B placed at phantom slice 13 ed on that information, it is s Type B rectangular dist Value: 1.000 unitless Halfwidth of Limits: 0 ur to the phantom compared to Constant Value: 130 cm	bution 4 % e precision (2s) of the 3-chip readings ranged from 0.015 0300. Therefore, will conclude this to be a trapezoidal dis 300/0.0504, or 0.595. Tribution ured. 1% is a judgemental estimate; however, evidence 3 show the difference between the second and first irrad suspected that 1% is a conservatively high estimate. Tribution hitless on distance for about 10 sec. This will have negligible im o the 8 hour irradiation time. Assign 0 influence for this.	52 to 0.0504 stribution wit from the liations to be
r the baselin ly about 10 lfwidth of 5.(hisotropy: e source ani erence TLDs hin 1%. Base insit: sume source ivered dose s is the mea second (bel	e (reference) irradiation, the chip positions exceeded 0.0 04% and Shapefactor of 0.0 Type B rectangular dist Value: 1.000 unitless Halfwidth of Limits: 1 % isotropy has not been measu s placed at phantom slice 13 ed on that information, it is s Type B rectangular dist Value: 1.000 unitless Halfwidth of Limits: 0 ur e was at 4' past the irradiation to the phantom compared to Constant Value: 130 cm	e precision (2s) of the 3-chip readings ranged from 0.015 300. Therefore, will conclude this to be a trapezoidal dis 300/0.0504, or 0.595. Tribution ured. 1% is a judgemental estimate; however, evidence 3 show the difference between the second and first irrad suspected that 1% is a conservatively high estimate. Tribution hitless on distance for about 10 sec. This will have negligible im o the 8 hour irradiation time. Assign 0 influence for this.	52 to 0.0504 stribution wit from the liations to be
hisotropy: e source ani erence TLDs hin 1%. Base unsit: sume source ivered dose s is the mea second (bel	Type B rectangular dist Value: 1.000 unitless Halfwidth of Limits: 1 % isotropy has not been measu s placed at phantom slice 13 ed on that information, it is s Type B rectangular dist Value: 1.000 unitless Halfwidth of Limits: 0 ur e was at 4' past the irradiation to the phantom compared to Constant Value: 130 cm	ribution ured. 1% is a judgemental estimate; however, evidence 3 show the difference between the second and first irrad suspected that 1% is a conservatively high estimate. ribution hitless on distance for about 10 sec. This will have negligible im o the 8 hour irradiation time. Assign 0 influence for this.	from the liations to be
e source ani erence TLD: hin 1%. Basi insit sume source ivered dose s is the mea second (bel	sotropy has not been measu s placed at phantom slice 13 ed on that information, it is s Type B rectangular distuvalue: 1.000 unitless Halfwidth of Limits: 0 ur e was at 4' past the irradiation to the phantom compared to Constant Value: 130 cm	ured. 1% is a judgemental estimate; however, evidence 3 show the difference between the second and first irrad suspected that 1% is a conservatively high estimate. ribution hitless on distance for about 10 sec. This will have negligible im o the 8 hour irradiation time. Assign 0 influence for this.	from the liations to be
sume source ivered dose s is the mea second (bel	Type B rectangular dist Value: 1.000 unitless Halfwidth of Limits: 0 ur e was at 4' past the irradiatio to the phantom compared to Constant Value: 130 cm	ribution nitless on distance for about 10 sec. This will have negligible im o the 8 hour irradiation time. Assign 0 influence for this.	ipact on the
sume source ivered dose s is the mea second (bel	e was at 4' past the irradiation to the phantom compared to Constant Value: 130 cm	on distance for about 10 sec. This will have negligible im o the 8 hour irradiation time. Assign 0 influence for this.	npact on the
s is the mea second (be	Constant Value: 130 cm		
s is the mea second (bel	sured height of the source of		
ues, h _{os} and	It-on) irradiations, uncertaint h _{op,} respectively.	off the midline for the extreme elevations (lowest and hig ty of the measurement is assigned via source and phant	ghest). For tom offset
B	Type B rectangular distr Value: 0 cm Halfwidth of Limits: 0.3 (ribution	
imated value	e by MKM		
:	Type B rectangular distr Value: 0 cm Halfwidth of Limits: 0.3 d	ribution	
imated value	e by MKM		
06/02/2015	File: StemRad Belt-on Belt-of	f Ratio.smu	Page 2 of 6
		Generated with GUM Workbenc	ch Pro Version 2.3
ir ir	mated value	mated value by MKM Type B rectangular dist Value: 0 cm Halfwidth of Limits: 0.3 mated value by MKM 06/02/2015 File: StemRad Belt-on Belt-of	mated value by MKM Type B rectangular distribution Value: 0 cm Halfwidth of Limits: 0.3 cm mated value by MKM 06/02/2015 File: StemRad Belt-on Belt-off Ratio.smu Generated with GUM Workbend

	Dosimetry-based Evaluation of StemRad Shielding Belt Effectiveness	
l:	Constant Value: 130 cm	
This is the mea second (belt-or l _{os} and l _{op,} resp	sured lateral distance of the source to the reference point at slice 29 of the p a) irradiation, uncertainty of the measurement is assigned via source and pha ectively.	hantom. For the intom offset values,
I _{op} :	Type B rectangular distribution Value: 0 cm Halfwidth of Limits: 0.3 cm	
Estimated value	e by MKM	
I _{os} :	Type B rectangular distribution Value: 0 cm Halfwidth of Limits: 0.3 cm	
Estimated value	e by MKM	
h2:	Constant Value: 54 cm	
This is the mea For the second values, h _{os} and	sured height of the source off the midline for the mid elevations (middle lowe (belt-on) irradiations, uncertainty of the measurement is assigned via source h_{op} , respectively.	r and middle upper). and phantom offset
h3:	Constant Value: 0 cm	
	File: StemRad Belt-on Belt-off Ratio.smu	Page 3 of 6
ate: 06/02/2015		
ate: 06/02/2015	Generated with GUM V	Workbench Pro Version 2.3.7

Jncertainty Br Ratio _{dos} :	udgets: Ratio of the Beli	-on to Belt-off do	ses (shielding	effectiveness)	
Quantity	Value	Standard Uncertainty	Distribution	Sensitivity Coefficient	Uncertainty Contribution	Index
TLDAvg _{belton}	1.0000 mrad	0.0310 mrad	trapezoidal	1.0	0.031 unitless	61.0 %
TLDAvg _{beltof} f	1.0000 mrad	0.0239 mrad	trapezoidal	-1.0	-0.024 unitless	36.3 %
S _{anisotropy}	1.00000 unitless	0.00577 unitless	rectangular	1.0	5.8·10 ⁻³ unitless	2.1 %
S _{transit}	1.0 unitless	0.0 unitless	rectangular	0.0	0.0 unitless	0.0 %
h1	130.0 cm					
h _{op}	0.0 cm	0.173 cm	rectangular	5.6·10 ⁻³	970·10 ⁻⁶ unitless	0.0 %
h _{os}	0.0 cm	0.173 cm	rectangular	5.6·10 ⁻³	970·10 ⁻⁶ unitless	0.0 %
1	130.0 cm					
l _{op}	0.0 cm	0.173 cm	rectangular	0.011	1.9·10 ⁻³ unitless	0.2 %
l _{os}	0.0 cm	0.173 cm	rectangular	0.011	1.9·10 ⁻³ unitless	0.2 %
h2	54.0 cm					
h3	0.0 cm					
Ratio _{dos}	1.0000 unitless	0.0397 unitless				

Quantity	Value	Standard Uncertainty	Distribution	Sensitivity Coefficient	Uncertainty Contribution	Index
TLDAvg _{belton}	1.0000 mrad	0.0310 mrad	trapezoidal	1.0	0.031 mrad	100.0 %
Dose _{belton}	1.0000 mrad	0.0310 mrad				
DUSChelton	1.0000 miau	0.0510111au				
Deitoit						
- Deiton I		- Ina a construction of the				
benen						
<u>soloit</u>			_			
bolon						
			-			
			, ,			
			_			

Date: 06/02/2015 File: StemRad Belt-on Belt-off Ratio.smu

Page 4 of 6

	Dosimetry-ba	ased Evaluation of Ste	mRad Shielding I	Belt Effectiveness	5	
rrad _{offset} :	Difference in					
Quantity	Value	Standard Uncertainty	Distribution	Sensitivity Coefficient	Uncertainty Contribution	Index
Sanisotropy	1.00000 unitless	0.00577 unitless	rectangular	1.0	5.8.10 ⁻³ unitless	78.6 %
S _{transit}	1.0 unitless	0.0 unitless	rectangular	0.0	0.0 unitless	0.0 %
h1	130.0 cm					
h _{op}	0.0 cm	0.173 cm	rectangular	5.6·10 ⁻³	970·10 ⁻⁶ unitless	2.2 %
h _{os}	0.0 cm	0.173 cm	rectangular	5.6·10 ⁻³	970·10 ⁻⁶ unitless	2.2 %
1	130.0 cm					
l _{op}	0.0 cm	0.173 cm	rectangular	0.011	1.9.10 ⁻³ unitless	8.5 %
l _{os}	0.0 cm	0.173 cm	rectangular	0.011	1.9.10 ⁻³ unitless	8.5 %
h2	54.0 cm					
h3	0.0 cm					
Irradoffset	1.00000 unitless	0.00651 unitless	×			

Dose_{beltoff}:

Dose determined from the irradiation without the belt

Quantity	Value	Standard Uncertainty	Distribution	Sensitivity Coefficient	Uncertainty Contribution	Index
TLDAvg _{beltof}	1.0000 mrad	0.0239 mrad	trapezoidal	1.0	0.024 mrad	100.0 %
Dose _{beltoff}	1.0000 mrad	0.0239 mrad				

distance _{belton} :	actual distance	(incl. possible	positioning	errors)
------------------------------	-----------------	-----------------	-------------	---------

h1 130.0 cm rectangular 0.44 h _{op} 0.0 cm 0.173 cm rectangular 0.44 h _{os} 0.0 cm 0.173 cm rectangular 0.44 I 130.0 cm 0.173 cm rectangular 0.44	0.076 cm 0.076 cm	10.4 %
h _{op} 0.0 cm 0.173 cm rectangular 0.44 h _{os} 0.0 cm 0.173 cm rectangular 0.44 I 130.0 cm 0.173 cm rectangular 0.44	0.076 cm 0.076 cm	10.4 %
h _{os} 0.0 cm 0.173 cm rectangular 0.44 I 130.0 cm	0.076 cm	10.4 %
I 130.0 cm		10.170
lop 0.0 cm 0.173 cm rectangular 0.85	0.15 cm	39.6 %
I _{os} 0.0 cm 0.173 cm rectangular 0.85	0.15 cm	39.6 %
h2 54.0 cm		
h3 0.0 cm		
distance 155.847 cm 0.235 cm belton		

Dosimetry-based Evaluation of StemRad Shielding Belt Effectiveness

This distance is assigned uncertainty based on how well the positioning of the second (belt-on) irradiation configuration repicates the reference conditions (belt-off). Values for h1, h2, h3 and I are considered as constants for convenience, but each is then assigned offset influences associated with lateral distance and height of both the source and the phantom. The distance for the irradiation is taken to be a weighted composite of all of the five distances, consisting of two heights below the source midpoint and two hieghts above. The distance from the source to the phantom reference point (center of the phantom of slice 29) is calculated as the hypoteneuse of the various angles formed by heights (h1, h2 and h3) and lateral distance (I). Since there are five equal dose intervals, 40% of the dose comes from height h1, 40% from height h2 and 20% from height h3.

distance _{beltoff} : reference distance (composite of five levels)						
Quantity	Value	Standard Uncertainty	Distribution	Sensitivity Coefficient	Uncertainty Contribution	Index
h1	130.0 cm					
I	130.0 cm					
h2	54.0 cm					
h3	0.0 cm				- 14-15	
distance beltoff	155.84683117866 cm	0.0 cm				87 - C

This distance is assumed to be the reference distance. Since this is a comparative assessment (i.e., relative evaluation), the irradiation with the belt off is assume to be performed at an absolute distance. Therefore, values for h1, h2, h3 and I are considered to be constants. The distance for the irradiation is taken to be a weighted composite of all of the five distances, consisting of two heights below the source midpoint and two hieghts above. The distance from the source to the phantom reference point (center of the phantom of slice 29) is calculated as the hypoteneuse of the various angles formed by heights (h1, h2 and h3) and lateral distance (l). Since there are five equal dose intervals, 40% of the dose comes from height h1, 40% from height h2 and 20% from height h3.

Results:

Quantity	Value	Expanded Uncertainty	Coverage factor	Coverage
Ratio _{dos}	1.000 unitless	7.9 % (relative)	2.00	95% (normal)
Dose _{belton}	1.000 mrad	6.2 % (relative)	2.00	95% (normal)
Irrad _{offset}	1.000 unitless	1.3 % (relative)	2.00	95% (normal)
Dose _{beltoff}	1.000 mrad	4.8 % (relative)	2.00	95% (normal)
distance _{belton}	155.85 cm	0.30 % (relative)	2.00	95% (normal)
distance _{beltoff}	155.84683117866 cm	0.0 % (relative)	2.00	95% (normal)

Date: 06/02/2015 File: StemRad Belt-on Belt-off Ratio.smu Page 6 of 6